Copied to
clipboard

G = C23.D13order 208 = 24·13

The non-split extension by C23 of D13 acting via D13/C13=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.D13, C26.11D4, C22⋊Dic13, C22.7D26, (C2×C26)⋊4C4, C133(C22⋊C4), C26.16(C2×C4), (C2×Dic13)⋊2C2, C2.3(C13⋊D4), (C2×C26).7C22, (C22×C26).2C2, C2.5(C2×Dic13), SmallGroup(208,19)

Series: Derived Chief Lower central Upper central

C1C26 — C23.D13
C1C13C26C2×C26C2×Dic13 — C23.D13
C13C26 — C23.D13
C1C22C23

Generators and relations for C23.D13
 G = < a,b,c,d,e | a2=b2=c2=d13=1, e2=b, ab=ba, eae-1=ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

2C2
2C2
2C22
2C22
26C4
26C4
2C26
2C26
13C2×C4
13C2×C4
2Dic13
2C2×C26
2C2×C26
2Dic13
13C22⋊C4

Smallest permutation representation of C23.D13
On 104 points
Generators in S104
(53 66)(54 67)(55 68)(56 69)(57 70)(58 71)(59 72)(60 73)(61 74)(62 75)(63 76)(64 77)(65 78)(79 92)(80 93)(81 94)(82 95)(83 96)(84 97)(85 98)(86 99)(87 100)(88 101)(89 102)(90 103)(91 104)
(1 36)(2 37)(3 38)(4 39)(5 27)(6 28)(7 29)(8 30)(9 31)(10 32)(11 33)(12 34)(13 35)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 40)(26 41)(53 79)(54 80)(55 81)(56 82)(57 83)(58 84)(59 85)(60 86)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 97)(72 98)(73 99)(74 100)(75 101)(76 102)(77 103)(78 104)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 14)(8 15)(9 16)(10 17)(11 18)(12 19)(13 20)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(37 50)(38 51)(39 52)(53 66)(54 67)(55 68)(56 69)(57 70)(58 71)(59 72)(60 73)(61 74)(62 75)(63 76)(64 77)(65 78)(79 92)(80 93)(81 94)(82 95)(83 96)(84 97)(85 98)(86 99)(87 100)(88 101)(89 102)(90 103)(91 104)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 91 36 65)(2 90 37 64)(3 89 38 63)(4 88 39 62)(5 87 27 61)(6 86 28 60)(7 85 29 59)(8 84 30 58)(9 83 31 57)(10 82 32 56)(11 81 33 55)(12 80 34 54)(13 79 35 53)(14 98 42 72)(15 97 43 71)(16 96 44 70)(17 95 45 69)(18 94 46 68)(19 93 47 67)(20 92 48 66)(21 104 49 78)(22 103 50 77)(23 102 51 76)(24 101 52 75)(25 100 40 74)(26 99 41 73)

G:=sub<Sym(104)| (53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)(61,74)(62,75)(63,76)(64,77)(65,78)(79,92)(80,93)(81,94)(82,95)(83,96)(84,97)(85,98)(86,99)(87,100)(88,101)(89,102)(90,103)(91,104), (1,36)(2,37)(3,38)(4,39)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,40)(26,41)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,14)(8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)(61,74)(62,75)(63,76)(64,77)(65,78)(79,92)(80,93)(81,94)(82,95)(83,96)(84,97)(85,98)(86,99)(87,100)(88,101)(89,102)(90,103)(91,104), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,91,36,65)(2,90,37,64)(3,89,38,63)(4,88,39,62)(5,87,27,61)(6,86,28,60)(7,85,29,59)(8,84,30,58)(9,83,31,57)(10,82,32,56)(11,81,33,55)(12,80,34,54)(13,79,35,53)(14,98,42,72)(15,97,43,71)(16,96,44,70)(17,95,45,69)(18,94,46,68)(19,93,47,67)(20,92,48,66)(21,104,49,78)(22,103,50,77)(23,102,51,76)(24,101,52,75)(25,100,40,74)(26,99,41,73)>;

G:=Group( (53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)(61,74)(62,75)(63,76)(64,77)(65,78)(79,92)(80,93)(81,94)(82,95)(83,96)(84,97)(85,98)(86,99)(87,100)(88,101)(89,102)(90,103)(91,104), (1,36)(2,37)(3,38)(4,39)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,40)(26,41)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,14)(8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)(61,74)(62,75)(63,76)(64,77)(65,78)(79,92)(80,93)(81,94)(82,95)(83,96)(84,97)(85,98)(86,99)(87,100)(88,101)(89,102)(90,103)(91,104), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,91,36,65)(2,90,37,64)(3,89,38,63)(4,88,39,62)(5,87,27,61)(6,86,28,60)(7,85,29,59)(8,84,30,58)(9,83,31,57)(10,82,32,56)(11,81,33,55)(12,80,34,54)(13,79,35,53)(14,98,42,72)(15,97,43,71)(16,96,44,70)(17,95,45,69)(18,94,46,68)(19,93,47,67)(20,92,48,66)(21,104,49,78)(22,103,50,77)(23,102,51,76)(24,101,52,75)(25,100,40,74)(26,99,41,73) );

G=PermutationGroup([[(53,66),(54,67),(55,68),(56,69),(57,70),(58,71),(59,72),(60,73),(61,74),(62,75),(63,76),(64,77),(65,78),(79,92),(80,93),(81,94),(82,95),(83,96),(84,97),(85,98),(86,99),(87,100),(88,101),(89,102),(90,103),(91,104)], [(1,36),(2,37),(3,38),(4,39),(5,27),(6,28),(7,29),(8,30),(9,31),(10,32),(11,33),(12,34),(13,35),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,40),(26,41),(53,79),(54,80),(55,81),(56,82),(57,83),(58,84),(59,85),(60,86),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,97),(72,98),(73,99),(74,100),(75,101),(76,102),(77,103),(78,104)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,14),(8,15),(9,16),(10,17),(11,18),(12,19),(13,20),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(37,50),(38,51),(39,52),(53,66),(54,67),(55,68),(56,69),(57,70),(58,71),(59,72),(60,73),(61,74),(62,75),(63,76),(64,77),(65,78),(79,92),(80,93),(81,94),(82,95),(83,96),(84,97),(85,98),(86,99),(87,100),(88,101),(89,102),(90,103),(91,104)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,91,36,65),(2,90,37,64),(3,89,38,63),(4,88,39,62),(5,87,27,61),(6,86,28,60),(7,85,29,59),(8,84,30,58),(9,83,31,57),(10,82,32,56),(11,81,33,55),(12,80,34,54),(13,79,35,53),(14,98,42,72),(15,97,43,71),(16,96,44,70),(17,95,45,69),(18,94,46,68),(19,93,47,67),(20,92,48,66),(21,104,49,78),(22,103,50,77),(23,102,51,76),(24,101,52,75),(25,100,40,74),(26,99,41,73)]])

C23.D13 is a maximal subgroup of
C22.2D52  C23⋊Dic13  C23.11D26  C22⋊Dic26  C23.D26  C22⋊C4×D13  D26.12D4  C23.6D26  C52.48D4  C23.21D26  C4×C13⋊D4  C23.23D26  D4×Dic13  C23.18D26  C52.17D4  C23⋊D26  C522D4  Dic13⋊D4  C24⋊D13
C23.D13 is a maximal quotient of
C52.55D4  C26.10C42  D4⋊Dic13  C52.D4  C23⋊Dic13  Q8⋊Dic13  C52.10D4  C52.56D4

58 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D13A···13F26A···26AP
order122222444413···1326···26
size111122262626262···22···2

58 irreducible representations

dim111122222
type+++++-+
imageC1C2C2C4D4D13Dic13D26C13⋊D4
kernelC23.D13C2×Dic13C22×C26C2×C26C26C23C22C22C2
# reps12142612624

Matrix representation of C23.D13 in GL4(𝔽53) generated by

1000
235200
00110
00052
,
52000
05200
0010
0001
,
52000
05200
00520
00052
,
1000
0100
004237
00024
,
474200
13600
004921
00224
G:=sub<GL(4,GF(53))| [1,23,0,0,0,52,0,0,0,0,1,0,0,0,10,52],[52,0,0,0,0,52,0,0,0,0,1,0,0,0,0,1],[52,0,0,0,0,52,0,0,0,0,52,0,0,0,0,52],[1,0,0,0,0,1,0,0,0,0,42,0,0,0,37,24],[47,13,0,0,42,6,0,0,0,0,49,22,0,0,21,4] >;

C23.D13 in GAP, Magma, Sage, TeX

C_2^3.D_{13}
% in TeX

G:=Group("C2^3.D13");
// GroupNames label

G:=SmallGroup(208,19);
// by ID

G=gap.SmallGroup(208,19);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-13,20,101,4804]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^13=1,e^2=b,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C23.D13 in TeX

׿
×
𝔽